- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Tian, Yingtao (2)
-
Chen, Haochen (1)
-
Chen, Muhao (1)
-
Ku, Wei-Shinn (1)
-
Li, Jingjing (1)
-
Skiena, Steven (1)
-
Sultan, Syed Fahad (1)
-
Wang, Haixun (1)
-
Wang, Wenlu (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)We present FastRP, a scalable and performant algorithm for learning distributed node representations in a graph. FastRP is over 4,000 times faster than state-of-the-art methods such as DeepWalk and node2vec, while achieving comparable or even better performance as evaluated on several real-world networks on various downstream tasks. We observe that most network embedding methods consist of two components: construct a node similarity matrix and then apply dimension reduction techniques to this matrix. We show that the success of these methods should be attributed to the proper construction of this similarity matrix, rather than the dimension reduction method employed. FastRP is proposed as a scalable algorithm for network embeddings. Two key features of FastRP are: 1) it explicitly constructs a node similarity matrix that captures transitive relationships in a graph and normalizes matrix entries based on node degrees; 2) it utilizes very sparse random projection, which is a scalable optimization-free method for dimension reduction. An extra benefit from combining these two design choices is that it allows the iterative computation of node embeddings so that the similarity matrix need not be explicitly constructed, which further speeds up FastRP. FastRP is also advantageous for its ease of implementation, parallelization and hyperparameter tuning. The source code is available at https://github.com/GTmac/FastRP.more » « less
-
Li, Jingjing; Wang, Wenlu; Ku, Wei-Shinn; Tian, Yingtao; Wang, Haixun (, SIGSPATIAL '19: Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems)A natural language interface (NLI) to databases is an interface that translates a natural language question to a structured query that is executable by database management systems (DBMS). However, an NLI that is trained in the general domain is hard to apply in the spatial domain due to the idiosyncrasy and expressiveness of the spatial questions. Inspired by the machine comprehension model, we propose a spatial comprehension model that is able to recognize the meaning of spatial entities based on the semantics of the context. The spatial semantics learned from the spatial comprehension model is then injected to the natural language question to ease the burden of capturing the spatial-specific semantics. With our spatial comprehension model and information injection, our NLI for the spatial domain, named SpatialNLI, is able to capture the semantic structure of the question and translate it to the corresponding syntax of an executable query accurately. We also experimentally ascertain that SpatialNLI outperforms state-of-the-art methods.more » « less
An official website of the United States government
